

Review of in vitro and in vivo research on *Gynura procumbens* (Lour.) Merr.'s potential as an antidiabetic

M Kishore Babu¹, P. Chandra Sekhar², S Chellaram³, P. Gangi Reddy⁴

1. Professor , Department of pharmaceutics , QIS College of pharmacy , Ongole , A.P

2. Assistant Professor , Department of Pharmaceutics , QIS College of pharmacy , Ongole , A.P

3. Assistant Professor , Department of Pharmaceutics , QIS College of pharmacy , Ongole , A.P

4. Assistant Professor , Department of Pharmaceutics , QIS College of pharmacy , Ongole , A.P

ABSTRACT

A chronic metabolic condition, diabetes mellitus (DM) affects around 10.5% of individuals globally. It causes serious side effects such cardiovascular disease, retinopathy, and nephropathy. Long-term usage of pharmaceutical medications, which may be expensive and have a number of negative consequences, is a common component of conventional therapy for diabetes mellitus. These difficulties have led to an increase in interest in complementary therapies, especially those made from herbal medications, in order to investigate their possible antidiabetic effects. According to scientific research, *Gynura procumbens* (Lour.) Merr. (GP) contains antioxidant qualities that significantly lower blood glucose levels and enhance lipid profiles. Therefore, the purpose of this study is to provide a thorough summary of the current understanding of GP's antidiabetic potential based on 12 in vivo investigations and four in vitro studies. With some trials indicating similar effectiveness to metformin in the treatment of diabetes, GP extract has encouraging promise as an antidiabetic drug at doses ranging from 50 mg to 3,000 mg. Furthermore, a variety of phytochemical metabolites have been identified by phytochemical investigations of GP, with a preponderance of polyphenolic metabolites—particularly phenolic acids and flavonoids—extracted from different solvents. The data is still conflicting, however, since other research has shown differing findings on GP's effectiveness in treating diabetes. This may be because there aren't enough clinical investigations, the extract preparation isn't standardized, and there isn't enough information on the bioactive metabolite causing the effects. Thus, more thorough research, including clinical trials, is

required to elucidate the disparities in the results and show how GP helps to reduce DM. With these advancements, GP might provide patients with a safer, more comprehensive approach while supplementing conventional DM therapy.

KEYWORDS

diabetes mellitus, antidiabetic plant, *Gynura procumbens*, hypoglycaemic, antioxidative, phytochemical

- Corresponding Author
Kishore babu
kishorebabu@gmail.com

Introduction

Persistent hyperglycemia brought on by decreased insulin production, action, or both is a hallmark of diabetes mellitus (DM), a chronic metabolic condition (Kharroubi and Darwish, 2015; Artasensi et al., 2020). Type 1 DM (T1DM) and type 2 DM (T2DM) are the two categories into which it falls. Ten percent of DM patients are T1DM, which is characterized by an extreme insulin shortage and often manifests as symptoms including thirst, weight loss, and polyuria (Sun et al., 2021). Conversely, type 2 diabetes is characterized by β -cell malfunction, insulin resistance in the target tissue, and relatively low insulin production, which often results in no symptoms (Nyenwe et al., 2011). Long-term consequences from diabetes mellitus impact the heart, blood vessels, kidneys, nerves, eyes, and other organs. Diabetes mellitus may be caused by a number of reasons, including genetic inheritance,

β -cells are destroyed by viral infections, bad

lifestyle choices, and other physical or chemical harm (Roglic, 2016).

According to Hossain et al. (2024), the incidence of diabetes mellitus is rising alarmingly globally and presents significant issues for healthcare systems everywhere. According to a recent research, if present trends continue, the prevalence of DM is expected to reach 700 million individuals worldwide by 2045, underscoring the urgent need for efficient treatment and preventative measures (Sun et al., 2022). According to a different research, DM is more common in low- and middle-income nations, where health systems are often ill-prepared to handle the disease's burden (Dendup et al., 2018). According to Weinberg Sibony et al. (2023), the primary goal of current conventional therapies for diabetes mellitus is blood glucose management with the use of pharmaceuticals like insulin, metformin, and other antidiabetic medications. They do not, however, address the disease's complex nature and often cause adverse effects. Long-term usage of certain drugs, for instance, may result in weight gain, gastrointestinal issues, and an elevated risk of cardiovascular events (Shurrah and Arafa, 2020). Furthermore, the fundamental causes of diabetes mellitus, such as insulin resistance and beta-cell dysfunction, are not sufficiently addressed by these therapies.

Consequently, the use of complementary and alternative treatments, such as herbal medications, to treat diabetes is becoming more popular. By focusing on many metabolic pathways implicated in the onset of diabetes mellitus, botanical medications provide a comprehensive strategy (Pang et al., 2019). They may provide further advantages including anti-inflammatory and antioxidant properties and are often thought to have minimal adverse effects (Adam et al., 2022). Additionally, in low- and middle-income nations, traditional antidiabetic medications may be too expensive or unavailable. Locally cultivated botanical drugs, in particular, are often thought to be more accessible and cost-effective (Mohan et al., 2020; Chaachouay and Zidane, 2024). Furthermore, in contemporary healthcare systems, integrative medicine—which blends traditional therapies with evidence-based complementary practices—is growing in significance. As a consequence, more study has been done on the antidiabetic qualities of many botanical medications, which have shown encouraging outcomes in preclinical and clinical trials (Vivó-Barrachina et al., 2022).

A large and priceless source of bioactive metabolites, many of which have a variety of pharmacological characteristics, may be found in botanical medications. They are a promising research route with great potential to improve the overall treatment of diabetes mellitus because of their varied methods of action and typically decreased risk of side effects. In 2023, Yedjou et al. A herbal plant high in bioactive metabolites, *Gynura procumbens* (Lour.) Merr. (GP) may have therapeutic uses for a variety of illnesses. The Asteraceae family includes this perennial evergreen plant (Tan et al., 2016). It is referred to as "bai bing cha" by Chinese and Malay populations (Murugaiyah et al., 2018), "Sambung Nyawa" or Sabungai in Malay (Jobaer et al., 2023), and "pyar-hmee" in Myanmar (Aung et al., 2021). "Longevity spinach" is another name for it (Jobaer et al., 2023). According to Tan et al. (2016), this green vegetable usually grows tiny and reaches a height of one to three meters. Additionally, it has ovate-elliptical or lanceolate leaves that are 3.5–8 cm long and 0.8–3.5 cm broad, as well as yellow, thin, panicle-shaped flower heads that are 1–1.5 cm tall. There are large populations of this edible herbaceous plant in China, Malaysia, Indonesia, Thailand, and Vietnam. According to Kaewseejan et al. (2015), GP leaves are a popular vegetable in Thailand that are used in a wide range of culinary inventions. They are used in salads, soups, curries, chilli paste, and other meals and may be eaten raw or cooked. It is often eaten raw with rice in Malaysia and added to salads and ulam (Hew and Gam, 2011).

Diabetes, hyperlipidemia, kidney disease, hypertension, fever, constipation, skin irritation, migraine, rheumatism, hemorrhoids, and colon cancer have all been treated with this plant for a long time in traditional medicine (Zhang and Tan, 2000; Rosidah et al., 2009; Hassan et al., 2010; Mohamed et al., 2023). According to Iskander et al. (2002), Kim et al. (2011), Algariri et al. (2013), Hew et al. (2013), Jarikasem et al. (2013), Jeon and Kwon (2016), and others, this plant possesss a wide range of medicinal qualities, including anti-hyperlipidaemic, anti-inflammatory, antibacterial, antifungal, antihypertensive, antioxidant, and anticancer effects. Compared to synthetic medications that are sold commercially, this natural substance is a superior choice with less adverse effects. GP is a substantial alternative to contemporary medicine since it is easily accessible and reasonably priced, which is crucial for a

population that is very impoverished. Furthermore, because of the expanding markets for herbal raw materials and processed goods, GP has the potential to be grown commercially and used to produce organic products as a result of its rising popularity as a natural treatment.

Thus, the purpose of this review is to provide an overview of the most recent data from in vitro and animal models on the possible health advantages of GP in DM and its complications. This plant's promise as a supplementary therapy for the treatment of diabetes mellitus is highlighted by both its historic usage in folk medicine and scientific confirmation.

TABLE 1 Proximate nutritional contents of GP extract.

Component	Content	References
Proximate analysis (%)		Nath et al. (2023)
Ash	16.92	Nath et al. (2023)
Moisture	6.2	Nath et al. (2023)
Carbohydrate	0.4	Nath et al. (2023)
Protein	6.2	Nath et al. (2023)
Fat	0.07	Nath et al. (2023)
Crude fiber	13.59	Nath et al. (2023)

composition of protein (6.2%), moisture (6.2%), carbohydrate (0.4%), and fat (0.07%) (Nath et al., 2023). This is important as it can help reduce the risk of various chronic diseases, such as type 2 diabetes by improving insulin sensitivity, regulating blood glucose levels, and reducing the risk of developing diabetes (Jobaer et al., 2023). The nutritional contents of the GP extract are listed in Table 1.

Meanwhile, phytochemical studies of GP have revealed a diverse phytochemical metabolite, with a predominance of polyphenolic metabolites, especially phenolic acids and

1 Nutritional and Phytochemistry of *Gynura procumbens* (Lour.) Merr

The nutritional analysis of GP leaves revealed that they contain 13.59% crude fibre and 16.92% ash. Its nutritional properties, especially the high fibre content and low glycaemic profile, increase the antidiabetic potential of GP and make it a promising candidate for dietary intervention for the prevention or treatment of T2DM (Nath et al., 2023). In addition, GP leaves contain a low

flavonoids, extracted from various solvents. Of the phenolic acids, gallic acid, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid and syringic acid, which belong to the hydroxybenzoic acid subclass were consistently detected. They can be detected in the aqueous, ethanolic and ethyl acetate fractions of the leaves (Kaewseejan et al., 2015; Liu et al., 2019). Caffeic acid, p-coumaric acid, ferulic acid and sinapic acid, which belong to the hydroxycinnamic acids, can be found in both polar (aqueous, methanol) and semi-polar (ethyl acetate) extracts, indicating their solubility in

a range of solvents (Kaewseejan et al., 2015; Alam et al., 2016; Liu et al., 2019; Kim et al., 2021). In addition, phenolic acids have been shown to lower blood glucose levels and protect against chronic diseases caused by hyperglycaemia through antioxidant protection (Deka et al., 2022). Important flavonoids such as rutin (a quercetin glycoside), quercetin, myricetin, kaempferol, apigenin and luteolin have been found in several extracts, reflecting their richness and structural diversity within the plant matrix (Kaewseejan et al., 2015; Liu et al., 2019; Kim et al., 2021). These metabolites act on multiple diabetes targets and regulate key signalling pathways that improve both the symptoms and complications of T2DM (Dhanya, 2022). Furthermore, chlorogenic acid, a biologically active caffeoylquinic acid ester, was exclusively detected in the methanolic extract. This indicates its preferential solubility in more polar organic solvents (Kim et al., 2021).

In addition to polyphenols, the methanolic extract of GP also contained considerable amounts of non-phenolic bioactive metabolites, including coumarins such as oxypeucedanin and isoimperatorin, which are known for their anti-inflammatory and vasodilatory effects (Kim et al., 2021; Flores-Morales et al., 2023; Kubrak et al., 2025). Indole-derived compounds such as indole-3- carboxylic acid and kynurenic acid, a tryptophan metabolite with neuroprotective properties, have also been identified and broaden the pharmacological spectrum of the plant (Kim et al., 2021).

On the other hand, the methanolic extract of GP also contained numerous lipophilic metabolites. These include lutein, a potent antioxidant involved in chlorophyll biosynthesis and known for its antimicrobial properties. Several triterpenoids such as lupeol, β -amyrin and friedelanol acetate, which are associated with antidiabetic, anti-inflammatory, anticancer and hepatoprotective activities have also been detected in the methanolic extract of GP (Szakiel et al., 2012; Saha and Bandyopadhyay, 2020;

Kim et al., 2021; Jobaer et al., 2023; Dalimunthe et al., 2024). In addition, phytosterols such as stigmasterol and a mixture of stigmasterol and β -sitosterol have also been identified, which are known for their cholesterol-lowering effect as well as their cytoprotective potential and reduced hyperglycaemic effects (Vezza et al., 2020; Jobaer et al., 2023). The antidiabetic effect of stigmasterol may be due to the regeneration of the pancreatic β -cells of Langerhans and thus the secretion of insulin, which controls blood glucose levels (Eidi et al., 2006; Nualkaew et al., 2015).

However, the non-specific bioactivity of natural products is often a hurdle in their bioassay evaluation, including GP (Baell, 2016). Some of its metabolites can behave as pan-assay interference compounds (PAINS), causing false positive signals in various assays and thus complicating their interpretation. For example, the pyrrolizidine alkaloids in GP are known to cause interference in a variety of bioassays due to their reactive nature and the formation of DNA adducts (Ji et al., 2019). Lupeol, stigmasterol and β -sitosterol can interfere with enzyme assays and receptor binding studies due to their structural similarity to endogenous steroids and thus bind non-selectively to other non-endogenous targets (Jobaer et al., 2023). In addition, polyphenolic metabolites such as chlorogenic acid, caffeic acid and various flavonoids could also interfere with redox-based assays (Kim et al., 2021). In addition, some pharmacological profiles of GP may also correspond to mechanisms typical of PAINS. For example, its anti-inflammatory activities have been shown to inhibit the NF- κ B signalling pathway and downregulate the expression of pro-inflammatory cytokines such as IL-1 β and TNF- α (Wong et al., 2015; Tan et al., 2022). These activities, which involve multiple signalling pathways, are often considered characteristic of PAINS. Nonetheless, the

potential for interference by PAINS does not undermine the medical value of GP. Evidence from a wide range of *in vitro* and *in vivo* studies, as well as from thousands of years of traditional use, has provided a solid basis for its efficacy and safety. This evaluation can be further enhanced by modern analytical and computational techniques. High-resolution techniques, in particular UHPLC-QTOF-MS/MS and HPLC-MS, and the use of computational tools such as molecular docking and molecular dynamics simulations enable the prediction of binding affinities and target interactions. These strategies are particularly useful for the identification of compounds with high promiscuity and thus potential PAINS properties (Tithi et al., 2023). By integrating such approaches, researchers can minimise concerns about assay interference and detect consistent, target-specific biological effects across multiple experimental platforms.

Table 2 provides an overview of the phytochemical metabolite found in GP.

TABLE 2 Phytochemical metabolites found in GP leaves.

Classification	Phytochemical metabolites	Extraction methods	References
Polyphenol	Gallic acid	Aqueous extract; ethanolic extract; ethyl acetate fraction	Liu et al. (2019)
Polyphenol	Protocatechuic acid	Aqueous extract; ethanolic extract; ethyl acetate fraction	Kaewseejan et al. (2015), Liu et al. (2019)
Polyphenol	<i>p</i> -Hydroxybenzoic acid	Ethanolic extract; ethyl acetate fraction	Kaewseejan et al. (2015)
Polyphenol	Vanillic acid	Ethanolic extract; ethyl acetate fraction	Kaewseejan et al. (2015)
Polyphenol	Syringic acid	Ethanolic extract; ethyl acetate fraction	Kaewseejan et al. (2015)
Polyphenol	Caffeic acid	Aqueous extract; ethanolic extract; ethyl acetate fraction; methanolic extract	Liu et al. (2019), Kim et al. (2021)
Polyphenol	<i>p</i> -coumaric acid	Aqueous extract; ethanolic extract; ethyl acetate fraction; methanolic extract	Liu et al. (2019), Kim et al. (2021)
Polyphenol	Ferulic acid	Ethanolic extract; ethyl acetate fraction	Kaewseejan et al. (2015)
Polyphenol	Sinapic acid	Ethanolic extract; ethyl acetate fraction	Kaewseejan et al. (2015)
Polyphenol	Rutin	Aqueous extract; ethanolic extract; ethyl acetate fraction	Kaewseejan et al. (2015), Liu et al. (2019)
Polyphenol	Myricetin	Aqueous extract; ethanolic extract; ethyl acetate fraction	Kaewseejan et al. (2015), Liu et al. (2019)
Polyphenol	Quercetin	Aqueous extract; ethanolic extract; ethyl acetate fraction	Kaewseejan et al. (2015), Liu et al. (2019)
Polyphenol	Apigenin	Aqueous extract; ethanolic extract; ethyl acetate fraction	Liu et al. (2019)
Polyphenol	Kaempferol	Aqueous extract; ethanolic extract; ethyl acetate fraction	Kaewseejan et al. (2015), Liu et al. (2019)
Polyphenol	Chlorogenic acid	Methanolic extract	Kim et al. (2021)
Coumarins	Oxypeucedanin	Methanolic extract	Kim et al. (2021)

Coumarins	Isoimperatorin	Methanolic extract	Kim et al. (2021)
Indolecarboxylic acids and derivatives	Indol-3-Carboxylic acid	Methanolic extract	Kim et al. (2021)
Tryptophan metabolite	Kynurenic acid	Methanolic extract	Kim et al. (2021)
Carotenoid	Lutein	Methanolic extract	Kim et al. (2021)
Polyphenol	Luteolin	Methanolic extract	Kim et al. (2021)
Diterpenoid	Phytol	Methanolic extract	Jobaer et al. (2023)
Triterpenoid	Lupeol	Methanolic extract	Jobaer et al. (2023)
Phytosterol	Stigmasterol	Methanolic extract	Jobaer et al. (2023)
Triterpenoid	Friedelanol acetate	Methanolic extract	Jobaer et al. (2023)
Triterpenoid	β -amyrin	Methanolic extract	Jobaer et al. (2023)
Phytosterol	Mixture of stigmasterol and β -sitosterol	Methanolic extract	Jobaer et al. (2023)

2 Pharmacokinetics of *Gynura procumbens* (Lour.) Merr

The pharmacokinetics of GP have significant implications for its potential therapeutic use; however, they are far from clear. The antidiabetic effect of GP, which is attributed to increased glucose uptake and improved insulin sensitivity, may also be associated with metabolic interactions (Hassan et al., 2010; Guo W. et al., 2021). There are also scants *in vivo* reports on the absorption, distribution, metabolism and excretion profiles of GP and its active fractions. However, useful information can be extrapolated from the known phytochemical profile of this plant and pharmacokinetic studies on structurally related metabolites.

It has been hypothesised that the absorption of polyphenolic metabolites extracted from GP may be poor. The flavonoids and phenolic acids generally have low oral bioavailability due to a high

degree of first-pass metabolism (Xin et al., 2011; Ye et al., 2023). However, there is evidence that the presence of other molecules in GP can increase its absorption. For example, chlorogenic acid (CA), a predominant phenolic metabolite of GP, was found to increase intestinal absorption and improve bioavailability when combined with

other phytochemicals in plants, with the improvement increasing from 6.7% (CA alone) to 16.0% (Wang et al., 2022). Pharmacokinetic analyses of the total extract are also not available, and the distribution of GP metabolites in the body remains unknown. However, similar flavonoids and phenolic acids have been found to accumulate in metabolically active organs such as adipose tissue, intestine, liver, kidneys and lungs (Ye et al., 2023). These results are in line with previous studies that have shown that GP molecules are widely distributed in numerous tissues, possibly leading to hepatoprotective and nephroprotective effects (Tahsin et al., 2022).

In addition, the metabolites of GP are generally expected to undergo phase I and phase II metabolism, namely, oxidative, reductive, hydrolytic, glucuronidated and sulphated, and methyl-mediated metabolic reactions, which mainly occur in the liver and gastrointestinal tract (Xin et al., 2011; Wang et al., 2022; Ye et al., 2023). Flavonoids and phenolic acids from GP are also likely to be metabolised via these pathways, leading to the formation of conjugated metabolites that can be detected in plasma after oral administration. Such modulating effects may also contribute to its antidiabetic effect. Although the excretion patterns of GP metabolites are not well studied, it is assumed that, like other plant

polyphenols, they are mainly excreted via the kidneys and bile (Ye et al., 2023).

Overall, the data available to date indicate that the biological effects of GP are significantly influenced by its low bioavailability, extensive metabolism and wide tissue distribution. Further studies are needed to clarify this involvement and to translate the molecular understanding to the clinical level of GP-targeted therapy.

3 Effects of *Gynura procumbens* (Lour.) Merr. on diabetes mellitus

Previous studies have documented the potential antidiabetic effect of GP, which is characterised by a reduction in blood glucose levels and improved glucose tolerance in DM. A total of 16 studies were found including four *in vitro* studies and 12 *in vivo* studies.

3.1 *In vitro* studies

The mechanisms behind GP's antidiabetic effects have been clarified by *in vitro* research. The molecular processes and signaling pathways involving many cell types were disclosed by the *in vitro* investigations. Merz and Thurmond (2020) and Aung et al. (2021) found that the aqueous extract of GP caused the GLUT4 membrane to translocate into 3T3-L1 adipocytes, while both the aqueous and ethanolic extracts caused the GLUT4 membrane to translocate into C2C12 muscle cells, which is a crucial location for insulin-stimulated glucose uptake. It's interesting to note that GP affected GLUT4 membrane translocation more strongly in C2C12 muscle cells than in 3T3-L1 adipocyte cells. Tissue-specific variations in sensitivity or responsiveness to the plant extract may be the cause of the observed effect. Both cells also showed an increase in AMP-activated protein kinase (AMPK) phosphorylation. A known therapeutic target for metabolic diseases including type 2 diabetes, AMPK is a crucial regulator of cellular energy balance (Kim et al., 2016; Aydin et al., 2025). Similar to how metformin works, AMPK activation promotes glucose uptake and fatty acid oxidation while suppressing lipogenesis and gluconeogenesis (Ke et al., 2018; O'Neill, 2013; Hasanzand, 2022).

Similarly, the ethanolic extract of GP reduces insulin resistance and restores glucose uptake by

activating the PI3K/Akt signaling pathway, a key mechanism in the control of glucose homeostasis (Guo S. et al., 2021; Fontana et al., 2024). The Akt, PI3K, and GLUT4 genes were shown to be upregulated by gene expression analysis, whereas the GS and GSK genes were significantly downregulated.

3 β genes. Protein analysis corroborated these gene results, showing that the GP-treated group had greater levels of PI3K, Akt, p-GSK 3 β , p-Akt, GLUT4, p-GS, and p-PI3K than the control group. On the other hand, the expression of the GS and GSK 3 β proteins was significantly downregulated. Following treatment with varying dosages of GP, the research demonstrated a considerable improvement in both glucose content and glucose absorption. The therapeutic potential of GP in reducing insulin resistance and encouraging efficient glucose utilization is shown by this dose-dependent improvement. All things considered, these molecular and biochemical results demonstrate that GP's ethanolic extract can alter the PI3K/Akt signaling pathway and related downstream targets, supporting its potential as a natural treatment option for insulin resistance and hyperglycemia (Feng et al., 2024).

Additionally, prior research has shown that the regulation of important enzymes involved in insulin signaling pathways, including glycogen synthase kinase three beta (GSK3 β), may underlie the antihyperglycaemic actions of GP. This process is believed to include kaempferol, a bioactive flavonoid metabolite of GP that inhibits GSK3 β activity (Wong et al., 2015; Yang et al., 2022). As dysregulation of GSK3 activity is linked to insulin resistance and hyperglycemia, the study demonstrated that HepG2 cells treated with the aqueous extract of GP showed increased phosphorylation of GSK3 β (Ser9), which in turn caused an increase in glucose (Henriksen, 2010; Liu and Yao, 2016). In hyperglycemic HepG2 cells, GP was also shown to enhance glucose absorption in a concentration-dependent manner, suggesting that it may be used as a natural medicinal drug to lower blood glucose levels.

However, a research using β -cells in T1DM rats' islets of Langerhans revealed no increase in cell viability after the injection of GP water extract (Hassan et al., 2010). In the pancreatic tissue of T1DM rats, however, significant alterations were seen in the distribution pattern of insulin-positive cells, with a notable reduction in the quantity of insulin-positive cells. This decline implies that GP

extract has no protective or regenerative effects on pancreatic insulin-secreting cells and is consistent with the autoimmune destruction of β -cells that defines type 1 diabetes (T1DM) (Roep et al., 2021; Atkinson and Mirmira, 2023). RIN-5F cell treatment, the cloned pancreatic β -cells, with different concentrations of GP water extract also did not lead to a significant increase in insulin levels or an improvement in cell viability. This indicates that the hypoglycaemic effect of the extract is not dependent on insulin secretion. The study concluded that the ability of GP to enhance or mimic insulin action at the

cellular level may be related to the insulin-like properties of the active ingredient contained in the extract. Therefore, further studies are needed to identify the active ingredient in GP extract that may play a role in these insulin-like properties which could contribute to the development of new therapies to combat insulin resistance.

3.2 *In vivo* studies

Several *in vivo* studies have demonstrated the beneficial blood glucose-lowering effect of DM, which is consistent with traditional claims of its therapeutic use and indicates its potential for diabetes management. For example, repeated oral administration of

250 mg/kg body weight/day of the methanolic extract and its various soluble fractions (SF), including aqueous (AQSF), chloroform (CSF), ethyl acetate (EASF), and petroleum ether (PESF), was found to lower blood glucose levels in T1DM rats for 21 days. AQSF, CSF and PESF showed a greater decrease in blood glucose levels than the other fractions (Jobaer et al., 2023). Similarly, in a 28-day dietary experiment in T1DM rats, administration of dry GP leaf powder was shown to decrease blood glucose levels, increase body weight, decrease triglycerides, cholesterol and low-density lipoproteins (LDL), and increase high-density lipoproteins (HDL) (Nath et al., 2023). These changes reflect the lipid-lowering and cardioprotective potential of GP, which is particularly beneficial for diabetics, who are at increased risk of cardiovascular complications. Furthermore, in a T2DM model

using eight-week-old male C57BL/ 6JL mice fed a high-fat diet (HFD), administration of dried GP powder resulted in a significant reduction in fasting and 2-h blood glucose levels in HFD mice after 3 months and maintained this effect for up to 5 months (Aung et al., 2021).

A previous study has shown that administration of the ethanolic extract of GP at different doses (500, 750 and 1,000 mg/kg) over a treatment period of approximately 42 days led to an increase in body weight in rats with T1DM and showed dose-dependent hypoglycaemic effects (Tahsin et al., 2022). In rats receiving higher doses, the reduction in blood glucose levels was more pronounced, suggesting that the antihyperglycaemic effect of GP is concentration-dependent and possibly related to the better bioavailability of the active phytochemicals at higher doses (Alfahel et al., 2023). Similarly, repeated administration of 50, 150 and 300 mg/kg body weight of an ethanolic GP extract to T1DM rats over a 7-day period resulted in an increase in body weight, a decrease in serum total cholesterol levels and a decrease in triglycerides in these rats. This indicates that GP is able to improve glucose tolerance in STZ-induced T1DM rats but not in normal rats (Zhang and Tan, 2000). The improvement in glucose tolerance could be due to an improvement in insulin sensitivity or modulation of hepatic glucose production and the antidiabetic activity of GP could be more strongly activated under hyperglycaemic conditions. (Li et al., 2022).

The study on the effect of GP also shows acute antihyperglycaemic activity and 14-day antihyperglycaemic activity in T1DM rats. This study showed a significant reduction

in blood glucose levels of 25% ethanol extract (EE) and all GP fractions (ethyl acetate fraction (EAF), n-butanol fraction (n-BF) and aqueous fraction (AF)), with the EAF significantly lowering blood glucose levels at 3 and 5 h (Algariri et al., 2014). Further analysis showed that the n-BF and AF fractions of GP exhibited antihyperglycaemic effects comparable to those of metformin, suggesting that it could affect glucose metabolism via similar pathways such

as modulating AMPK activity, altering insulin signalling or increasing the expression of glucose transporters (Entezari et al., 2022; Lee et al., 2022). In addition, the 14-day antihyperglycaemic activity showed a significant reduction in blood glucose levels, with the n-BF fraction showing the most potent effect. The efficacy of this fraction could be related to the presence of flavonoids and other phytoconstituents known for their insulin-mimetic or insulin-sensitising properties (Vinayagam and Xu, 2015; Zanzabil et al., 2023).

Meanwhile, Hassan et al. (2010) showed a significant reduction in body weight and fasting blood glucose levels as well as improved glucose tolerance and marked improvement in glucose utilisation 15–120 min after glucose loading in T1DM rats after 14-day of administration of 500 or 1,000 mg/kg GP water extract (Hassan et al., 2010). In addition, the isolated abdominal muscle of T1DM rats showed a significant increase in glucose uptake. This finding suggests a peripheral mechanism of action likely mediated by increased glucose transporter activity or enhanced intracellular glucose metabolism in skeletal muscle, which plays an important role in glucose utilisation (Chang et al., 2004; Chadt and Al-Hasani, 2020). The same study also concluded that GP inhibits endogenous insulin production and does not stimulate insulin secretion. In another study using different fractions of GP (n-butanol, hexane and ethyl acetate), a significant decrease in blood glucose levels was observed in T1DM rats, with the ethyl acetate fraction showing the most significant effect compared to the other fractions (June et al.,

2012). The study also found that GP inhibits GSK3 β , suggesting that the hypoglycaemic effect of the GP fractions may be due to direct or indirect effects on the activities of one or more components upstream of the insulin signalling pathway.

GP has also been reported to have an insulinomimetic effect due to its high content of flavonoids and glycosides. GP has been found to

inhibit gluconeogenesis in the liver, stimulate glycogenesis, stimulate hepatic glucose and lower hepatic endogenous glucose (Lee et al., 2012; Sok Yen et al., 2021). This contributes to better glycaemic control. In a study on the T1DM rat model, administration of ethanolic and aqueous extracts of GP led to an increase in liver glycogen content, but not to an increase in plasma insulin concentration (Lee et al., 2012). Interestingly, there was a decrease in fasting blood glucose and HbA1c levels. These findings suggest that the glucose-lowering and glycogen-promoting effect of GP is not mediated by increased insulin secretion, but may be due to insulin-independent mechanisms (Panahi et al., 2020). Thus, the ethanolic extract has the potential as an adjunct treatment in the treatment of DM due to its antidiabetic effect, which is comparable to that of metformin. However, further studies are needed to investigate the mechanism of action, long-term efficacy and safety profile.

On the other hand, in-depth studies at the molecular level revealed several potential signalling pathways associated with the role of GP in alleviating T2DM. The ethanolic extract of GP was found to strongly

TABLE 3 Summary of the effects of GP on DM.

Type of model	Treatment dosage	Treatment duration	Findings	References
<i>In vitro</i> studies				
C2C12 muscle cells 3T3-L1 adipocytes	GP water extract (100 µg/mL) and ethanolic extract (100 µg/mL)	24 h	↑ AMPK phosphorylation in both cells Water extract induced GLUT4 membrane translocation in 3T3-L1 adipocytes Both extracts induced GLUT4 membrane translocation in C2C12 muscle cells GLUT4 membrane translocation was more prominently in the C2C12 cells than in 3T3-L1 cells	Aung et al. (2021)
HepG2 cells	0.0391–1.2500 mg/mL ethanolic extract	24 h	↑ Akt, PI3K and GLUT4 genes ↑ GS and GSK 3β genes ↑ PI3K, Akt, p-GSK 3β, p-Akt, GLUT4, p-GS, and p-PI3K proteins ↓ GS and GSK 3β proteins Regulated glucose metabolism and insulin resistance via PI3K/Akt signalling pathway	Guo et al. (2021a)
HepG2 cells	0.1 µg/mL aqueous extract	24 h	↑ glucose consumption by 51% ↑ phosphorylations of GSK3β	Wong et al. (2015)
β-cells in the islet of Langerhans of diabetic rats Insulin-positive cells in the pancreas of diabetic rats RIN-5F cells	1, 5 or 10 mg/mL water extract	72 h 72 h 4–5 days for insulin secretion	No improvement in β-cells viability ↑ insulin-positive cells ↑ insulin levels in RIN-5F cells ↑ RIN-5F cells viability	Hassan et al. (2010)
<i>In vivo</i> studies				
Wistar albino rats induced T1DM by 120–150 mg/kg and its	250 mg/kg BW/day extract soluble	21 days	↓ blood glucose level AQSF, CSF and PESF showed a greater reduction in glucose	Jobaer et al. (2023)

alloxan	fractions: AQSF, CSF, EASF and PESF		levels compared to the other fractions	
Female Swiss albino mice induced T1DM by 150 mg/kg alloxan monohydrate	0.5% and 1.0% dry GP leaf powder	28 days	↑ glucose level ↑ body weight ↑ HDL level ↓ triglycerides, cholesterol, and LDL levels	Nath et al. (2023)
Male C57BL/6JL mice induced T2DM by fed with a high-fat diet (HFD-60)	1% dried GP powder	1, 3 and months	5 ↓ fasting and 2-h blood glucose levels	Aung et al. (2021)
Adult male Wistar rats induced T1DM with 150 mg/kg alloxan	500, 750 and 1,000 mg/kg BW/day ethanolic extract	42 days	Hypoglycemic activities in a dose-dependent manner ↑ body weight	Tahsin et al. (2022)
Male Sprague-Dawley induced T1DM by 60 mg/kg body weight STZ	50, 150 and 300 mg/kg BW/day ethanolic extract	7 days	↑ body weight ↓ serum glucose level ↓ triglyceride ↓ serum cholesterol level	Zhang and Tan (2000)
Male and female Sprague Dawley rat, induced T1DM by 55 mg/kg STZ	Acute antihyperglycemic activity: 500, 1,000 and 2000 mg/kg BW/day of 25% EE, EAF, n-BF and AF 14-day period antihyperglycemic activity: 500 and 1,000 mg/kg BW/day of 25% EE, EAF, n-BF and AF	14 days in total	Acute antihyperglycemic activity ↑ body weight, but insignificant compared to the control group EAF fraction ↓ blood glucose level comparable to metformin after 3 and 5 h 14-day period antihyperglycemic activity ↑ body weight ↓ glucose levels n-BF fraction showed the highest efficacy in reducing glucose levels in a dose-dependent manner	Algariri et al. (2014)

Continued on following page)

TABLE 3 (*Continued*) Summary of the effects of GP on DM.

Type of model	Treatment dosage	Treatment duration	Findings	References
Sprague Dawley rats induced T1DM by 55 mg/kg STZ	0, 25, 50, 75% and 95% (ethanol in water)	Up to 120 min, 7 h and 14 days for each treatment	↑ body weight after 14 days 95%, 25% and 0% extracts exerted significant effects on blood glucose from 15 to 120 min 25% ethanol extract demonstrated the most fasting blood glucose-lowering effect in acute/single oral administration and the 14-day study	Algariri et al. (2013)
Male Sprague-Dawley rats, induced T1DM by 65 mg/kg body weight STZ	500 or 1,000 mg/kg BW/day of water extract	14 days	↓ body weight ↓ fasting blood glucose level ↑ glucose tolerance ↑ glucose disposal ↑ muscle glucose uptake No glucose absorption	Hassan et al. (2010)
Male Sprague-Dawley rats induced T1DM by 45 mg/kg body weight STZ (i.v)	Hexane, ethyl acetate and n-butanol fractions at 250 mg/kg BW/day	2 weeks	↓ blood glucose level ↑ liver glycogen contents GSK3 β was phosphorylated	June et al. (2012)
C57BL/KsJ-db/db mice (db/db mice were derived from autosomal recessive inheritance of an C57BL/ KsJ inbred strain used as T2DM model)	3 g/kg BW/day ethanolic extract	5 weeks	↑ protein expression of AKT, eNOS, iNS and MAPK ↓ expression of caspase-8 and caspase-3 ameliorated insulin resistance and sensitivity via PI3K/Akt and AGE-RAGE signalling pathway	Guo et al. (2021b)

Male and female C57BL/KsJ db/db mice (used as T2DM model)	3 g/kg BW/day ethanolic extract	5 weeks	↑ water and food intake ↓ body weight ↓ blood glucose levels after 2 h and fasting blood glucose level ↓ serum TC and TG levels ameliorated insulin resistance and sensitivity via PI3K/Akt signalling pathway	Guo et al. (2021a)
Male Sprague Dawley rats induced T1DM by 55 mg/kg body weight STZ	50, 100 and 150 mg/kg BW/day aqueous and ethanolic extract	42 days	↓ HbA1c and fasting blood glucose levels ↑ liver glycogen content Ethanolic extract showed better improvement than aqueous extract in a dose-independent manner and comparable to metformin Liver hexokinase activity ↑ in 100 mg/kg body weight of aqueous extract ↓ in 100 and 150 mg/kg body weight of ethanolic extract Liver phosphofructokinase activity ↑ in 100 and 150 mg/kg body weight of ethanolic extract led ↑ in 100 mg/kg body weight of aqueous extract Liver fructose-1,6-bisphosphatase activity ↓ in all dosages of aqueous extract showed a decrease in diabetic rats ↓ in 100 and 150 mg/kg body weight of ethanolic extract	Lee et al. (2012)

affect key proteins and markers in the two disease-related protein signalling pathways, such as phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and receptor for advanced glycation end products (AGE- RAGE) (Guo W. et al., 2021). Genetic analysis of the study using the T2DM rat model revealed that the genes for eNOS, AKT, MAPK and iNS were significantly upregulated in the GP group compared to the model group, while the genes for caspase-8 and caspase-3 were downregulated. This study also showed

the involvement of two other metabolic pathways: retinol metabolism and glycerol phosphate metabolism. Further genetic and protein analyses in the T2DM rat model also showed the effect of the ethanolic extract of GP in upregulating GLUT4, Akt and PI3K genes by GP, along with downregulation of GS and GSK 3 β genes (Guo S. et al., 2021). This suggests that GP promotes glycogen synthesis and facilitates glucose uptake via insulin-mimetic or insulin-sensitising mechanisms (El- Ashmawy et al., 2022).

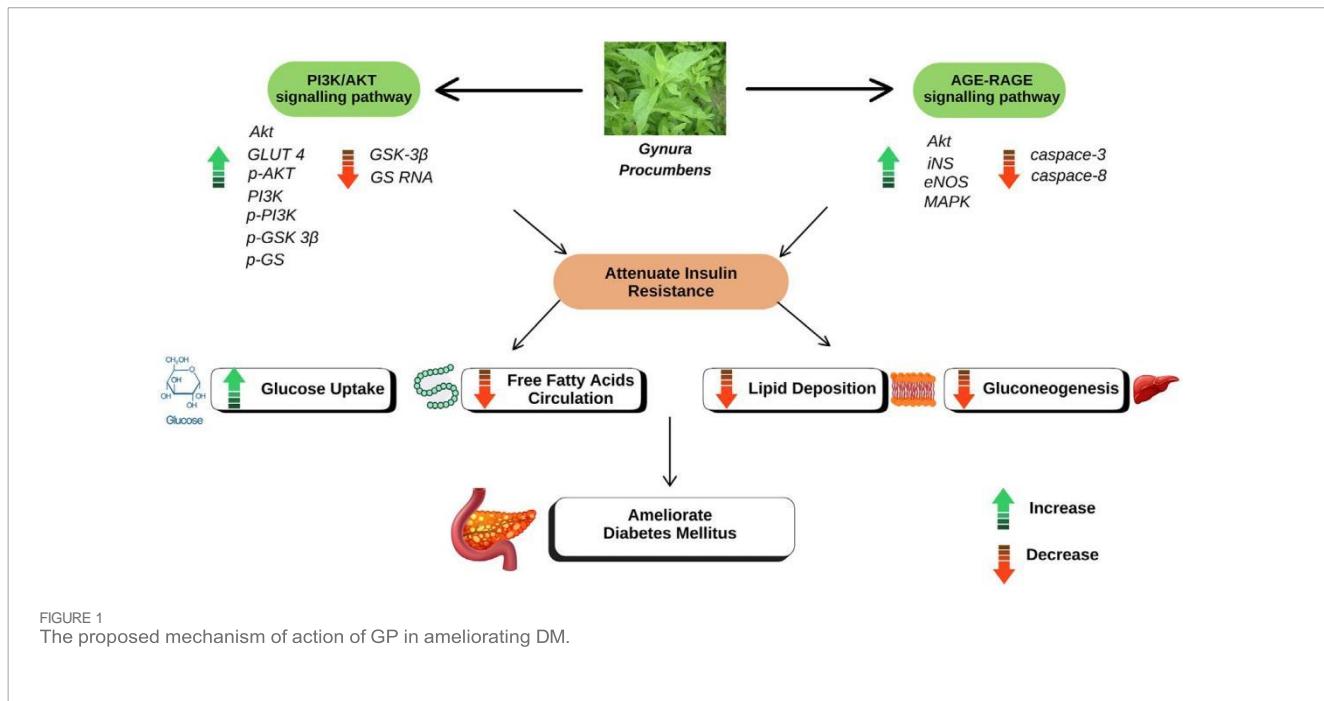


FIGURE 1
The proposed mechanism of action of GP in ameliorating DM.

In particular, RAGE, a molecule from the immunoglobulin superfamily, acts as a receptor for advanced glycation end products (AGEs) (Ong et al., 2018). AGEs are formed by non-enzymatic glycation and protein oxidation, especially in the presence of elevated blood glucose levels (Twarda-Clapa et al., 2022). Consequently, RAGE is considered a key player in the accumulation of various ligands in diabetic tissues (Ramasamy et al., 2011). In addition, PI3K/Akt also plays an important role in cell physiology by regulating the transmission of growth factor signals during important cellular processes and organismal growth, including glucose homeostasis and metabolism (Huang et al., 2018; Savova et al., 2023). The PI3K/AKT signalling pathway controls lipid and glucose metabolism under the guidance of insulin. Under normal circumstances, insulin is released

immediately after food intake, which triggers activation of the PI3K/AKT signalling pathway. In T2DM, however, there is a reduced response to insulin which disrupts the activity of the PI3K/AKT signalling pathway. This can lead to reduced insulin secretion by the pancreas, impaired glucose utilisation, increased release of free fatty acids in adipose tissue, decreased lipid accumulation in the body, increased gluconeogenesis in the liver and muscles, and a loss of fine regulation of lipid and glucose metabolism (Huang et al., 2018; Petersen and Shulman, 2018; Feng et al., 2024). A summary of the antidiabetic properties of GP can be found in Table 3 and the proposed mechanism of action of GP is shown in Figure 1.

4 Safety of *Gynura procumbens* (Lour.) Merr

Preclinical studies have generally shown that GP is safe for consumption at various doses. For example, the study by Algariri et al. (2014) showed that the maximum dose of the extract of 2000 mg/kg in an acute toxicity test did not result in any treatment-related mortality during the 14-day observation period

(Algariri et al., 2014). In addition, the acceptable daily intake (ADI) was set at 700 mg/kg/day. At the same time, the growth rate and indices of liver, kidney and haematopoietic function were also unaffected, indicating that the extract is safe and no acute toxicity was observed, as the LD50 for female rats is above 2000 mg/kg.

Furthermore, administration of 2 and 4 g/kg GP to rats in a 14- day toxicity trial did not cause any abnormalities in serum biochemical parameters (liver and kidney) or the structure of their organ tissues, with a zero-mortality rate even after the experimental period (Jabbar et al., 2023). The possibility of safe therapeutic use is supported by the absence of adverse effects on organ function, biochemical parameters and histological structures. These results may indicate that GP is a safe candidate of complementary therapy for the treatment of DM, as it has a wide safety margin. Despite the encouraging preclinical results, long-term toxicity, reproductive safety and human clinical studies are still scarce. To ensure the safety of the extract for long-term use in DM, these factors still need to be thoroughly investigated.

5 Future direction

Despite these encouraging data on the potential antidiabetic properties of GP, the evidence for its efficacy in the treatment of DM is still inconsistent. Future experimental research should focus on the testing of plant extracts for which comprehensive phytochemical fingerprints should be established according to the ConPhyMP guidelines to improve reproducibility and transparency in phytochemical

pharmacology (Heinrich et al., 2022). This includes comprehensive taxonomic authentication using voucher specimens, comprehensive reporting of collection and extraction conditions, and the use of more than one orthogonal analytical technique, such as UHPLC-QTOF-MS/MS, HPLCMS, GCMS and In addition, the lack of standardisation of the extract preparation can lead to different concentrations of the bioactive metabolites, which poses a major challenge for reproducibility and efficacy. For example, aqueous extracts can have different pharmacological effects compared to ethanolic extracts due to differences in solubility and stability of the active metabolites. Thus, standardising the extraction method and ensuring a consistent phytochemical profile is crucial to improve the reproducibility of results and demonstrate the clinical utility of GP in the treatment of DM.

In addition, the bioactive compound responsible for the observed effects was not clearly identified and quantified in some studies. The different study designs and the lack of clinical trials may also contribute to some inconsistencies and limit the generalisability of the results. To clarify these issues, more comprehensive studies are needed to identify the bioactive compounds and molecular targets as well as the mechanisms of action and to assess long- term safety. Potential risks that may be associated with prolonged use of GP, such as hepatotoxicity, nephrotoxicity and other systemic effects, also need to be carefully assessed. An understanding of the pharmacokinetics and pharmacodynamics of GP will also support its integration into current treatment regimens.

However, studies on the safety and efficacy, dose and long-term effects of GP in humans in clinical trials are very limited. Most current studies are conducted to investigate the underlying mechanisms and pharmacodynamics in controlled laboratory settings that have not yet been translated to the clinical. Accordingly, the lack of comprehensive clinical data on this product has greatly hindered

its inclusion in evidence-based medical systems and practises. Therefore, clinical studies need to be conducted to assess safety, tolerability and dose in healthy humans. This will allow the identification of relevant biomarkers that should be useful not only for monitoring the efficacy of the therapy, but also for the early detection of signs of toxicity. These studies should also include long-term use to detect any chronic toxicities or late-onset adverse effects.

6 Conclusion

GP has an impact similar to that of metformin and has encouraging promise as an antidiabetic drug. GP may help lower insulin resistance and boost insulin production by focusing on the AGE-RAGE and PI3K/AKT signaling pathways. The data is still conflicting, however, since other research has shown differing findings on GP's effectiveness in treating diabetes. This may be because there aren't enough clinical trials, the extract preparation isn't standardized, and there isn't enough information on the bioactive ingredient causing the effects. Thus, more thorough research, including clinical trials, is required to elucidate the disparities in the results and show how GP helps to reduce DM. With these advancements, GP might provide patients with a safer, more comprehensive approach while supplementing conventional DM therapy.

References

Mokhtar, M. H., Ahmad Juhari, M. a.A., Kashim, M., Abd Latib, E. H., Mohd Nasri, N., and Adam, S. H. (2022). A review of laboratory research and clinical trials on the possible health advantages of *Nigella sativa* for diabetes mellitus and its consequences. doi:10.3389/fnut.2022.1057825

Front. Nutr. 9, 1057825 Hossain, H., Hossain, M., Reza, H. M., Rahman, M. M., Alam, M. A., Subhan, N., et al. (2016). Derivatives of hydroxycinnamic acid: a possible class of natural substances for controlling obesity and lipid metabolism. 13. 27. doi:10.1186/s12986-016-0080-3 Nutr. and Metabolism

Alfahel, R., Przybyłowicz, K. E., Jabłońska, M., and Sawicki, T. (2023). Bioactive substances' anti-hyperglycemic properties in relation to preventing

diet-related illnesses. doi:10.3390/foods12193698; Foods 12, 3698

Asmawi, M. Z., Sadikun, A., Murugaiyah, V., Algariri, K., Meng, K. Y., Atangwho, I. J., et al. (2013). Leaf extracts from *Gynura procumbens* were studied for their hypoglycemic and anti-hyperglycemic effects. 3. 358–366 Asian Pac J. Trop. Biomed. doi:10.1016/S2221-1691(13)60077-5

Meng, K. Y., Asmawi, M. Z., Sadikun, A., Algariri, K., Atangwho, I. J., and Murugaiyah, V. (2014). *Gynura procumbens* leaf extract and fractions were evaluated for their antihyperglycemic and toxicological properties. 25, 75–93; Trop. Life Sci. Res.

Vistoli, G., Fumagalli, L., Pedretti, A., and Artasensi, A. (2020). A review of multi-target medications for type 2 diabetic mellitus. doi:10.3390/molecules25081987, Molecules 25, 1987

Mirmira, R. G., and Atkinson, M. A. (2023). Type 1 diabetes, a disease affecting the immune system, β cells, and exocrine pancreas, is the pathogenic "symphony." 150–1518 in Cell Metab. doi:10.1016/j.cmet.2023.06.018

Lwin, T.-T., Kanzaki, M., Mar, O., Imai, M., Kawakami, F., Aung, C. L., et al. (2021). *Gynura procumbens* (Lour.) Merr. Traditional and Kampo Med. 8, 138–147. doi:10.1002/tkm2.1277 Impact of water and ethanolic extracts on blood glucose

Tuzcu, B., Cam, F., Sevik, M. O., Tatar, E., Aydin, S., Tekinalp, S. G., et al. (2025). The impact of AMP-activated protein kinase activators on cellular metabolism and energy balance in individuals with type 2 diabetes. doi:10.1016/j.obmed.2024.100577

Obes. Med. 53, 100577

J. B. Baell (2016). Sensing Nature's PAINS: Pan assay interference compounds (PAINS), natural products, and natural product medications. 79, 616–628; doi:10.1021/acs.jnatprod.5b00947

Zidane, L., and Chaachouay, N. (2024). Natural products originating from plants: a source for medication research and discovery. 184–207 in Drugs Drug Candidates 3. doi:10.3390/ddc3010011

Al-Hasani, H., and Chadt, A. (2020). skeletal muscle, liver, and adipose tissue glucose transporters in metabolic health and illness. doi:10.1007/s00424-020-02417-x Pflügers Archiv - Eur. J. Physiology 472, 1273–1298

Chang, L., Saltiel, A. R., and Chiang, S.-H. (2004).

The control of glucose transport by insulin signaling. *Mol. Med.* 10, 65–71. doi:10.2119/2005-00029. Saltiel

In-depth investigation of lupeol: exploring the diversified pharmacological profile, Dalimunthe, A., Carensia Gunawan, M., Dhiya Utari, Z., Dinata, M. R., Halim, P., Estherina, S. P. N., et al. (2024). doi:10.3389/fphar.2024. Front. Pharmacol. 15, 1461478

Choudhury, A., Deka, H., and Dey, B. K. (2022). An outline of phenolic chemicals obtained from plants and how they are used to treat and control diabetes. 199–208 in *J. Pharmacopuncture.* doi:10.3831/KPI.2022.25.3.199

Astell-Burt, T., Clingan, S., Feng, X., and Dendup, T. (2018). A systematic evaluation of environmental risk factors for type 2 diabetes mellitus. *Public Health Int. J. Environ. Res.* 15, 78. doi:10.3390/ijerph15010078

R. Dhanya (2022). A look into multitarget treatment using quercetin to manage type 2 diabetes and its consequences. doi:10.1016/j.bioph.2021.112560 *Biomed. and Pharmacother.* 146, 112560

In 2006, Eidi, A., Eidi, M., and Esmaeili, E. Garlic (*Allium sativum* L.) has an antidiabetic impact on both normal and streptozotocin-induced diabetic rats. 13, 624–629. *Phytomedicine*, doi:10.1016/j.phymed.2005.09.010.

Ibrahim, A. O., Alfeky, N. H., Khedr, E. G., and El-Ashmawy, N. E. (2022). The antihyperglycemic actions of proanthocyanidins are mediated via downregulation of GSK3 and upregulation of GLUT4 and PI3K. doi:10.3892/mi; *Med. Int. (Lond)* 2, 14. 2022.39

As et al. (2022), Entezari, M., Hashemi, D., Taheriazam, A., Zabolian, A., Mohammadi, S., and Fakhri, F. A preclinical and clinical study of AMPK signaling in diabetes mellitus, insulin resistance, and diabetic complications. 146, 112563. doi:10.1016/j.bioph.2021.112563 *Biomed. and Pharmacother*

Zhang, X., Yang, S., Jiao, Q., Li, Q., Feng, Y., Ren, Y., et al. (2024). Traditional Chinese medicine metabolites that target the PI3K/AKT signaling pathway have a hypoglycemic impact on people with type 2 diabetes. doi:10.3389/fphar.2024.1373711 *Front. Pharmacol.* 15, 1373711.

González-Delgado, S., Garza-Veloz, I., Flores-Morales, V., Villasana-Ruiz, A. P., and Martinez-Fierro, M. L. (2023). effects of coumarins with various patterns of substitution in medicine. *Molecular Structures* doi:10.3390/molecules28052413, 28, 2413

Marchesi, S., Fontana, F., Giannitti, G., and Limonta, P. (2024). A risky relationship between glucose metabolism and the PI3K/Akt pathway in cancer. 20 3113–3125. doi:10.7150/ijbs.89942 *Int. J. Biol. Sci.*

Li, J., Liu, M., Yang, S., Guo, S., Ouyang, H., Du, W., et al. (2021a). Using network pharmacology and validation in C57BL/KsJ db/db mice, the protective effect of *Gynura procumbens* against type 2 diabetes mellitus is being investigated. 12, 1732–1744; doi:10.1039/d0fo01188f; *Food Function*

Wu, J., He, X., Yang, S., Guo, W., Ouyang, H., Liu, M., et al. (2021b). Considering plasma *Gynura procumbens*'s potential as a treatment for type 2 diabetes is being investigated using network pharmacology and metagenomics. doi:10.3389/fphar.2021.674379 *Front. Pharmacol.* 12, 674379

In 2022, Hasanvand, A. The function of AMPK-dependent pathways in metformin's cellular and molecular mechanisms: a fresh approach to illness prevention and therapy. 30 775–788. doi:10.1007/s10787-022-00980-6

Inflammopharmacology

Yusof, A. P., Ahmad, M., Hassan, Z., and Yam, M. F. (2010). *Gynura procumbens* water extract's antidiabetic qualities and mode of action in streptozotocin-induced diabetic rats. doi:10.3390/molecules15129008; *Molecules* 15, 9008–9023

Echeverria, J., Kulić, Ž., McGaw, L. J., Heinrich, M., Jalil, B., Abdel-Tawab, M., et al. (2022). The ConPhyMP Guidelines are best practices for the chemical characterization of extracts used in toxicological and pharmacological research. doi:10.3389/fphar.2022.953205; *Front. Pharmacol.* 13, 953205.

E. J. Henriksen (2010). Glycogen synthase kinase-3 dysregulation in skeletal muscle and the causes of type 2 diabetes and insulin resistance. 6. 285–293. doi:10.2174/157339910793360888; *Curr. Diabetes Rev.*

Gam, L. H., and C. S. Hew (2011). *Gynura procumbens* (Lour.) leaf proteome study of numerous proteins *Merr. Appl. Biochem. Biotechnol.* 165, 1577–1586. doi:10.1007/s12010-011-9377-x

In 2013, Hew, C. S., Gam, L. H., and Khoo, B. Y.

Proteins isolated from *Gynura procumbens* (Lour.) Merr. PLoS One 8, e68524. doi:10.1371/journal.pone.0068524 Anti-cancer properties

Islam, M. R., Hossain, M. J., and Al-Mamun, M. (2024). The fastest-growing public health issue in the world is diabetes mellitus; attention should be paid to early identification. 7. e2004; doi:10.1002/hsr2.2004; Health Sci. Rep.

Su, Z., Guo, J., Huang, X., and Liu, G. (2018). Type 2 diabetes and obesity and the PI3K/AKT pathway. 1483–1496 in Int. J. Biol. Sci. doi:10.7150/ijbs.27173

Song, Y., Jiratchariyakul, W., Coupar, I. M., and Iskander, M. N. (2002). screening for anti-inflammatory properties in *Gynura procumbens*, a medicinal plant. 233–244 in Plant Foods Hum. Nutr. doi:10.1023/a:1021851230890

Salim Amur Al Sinawi, Z., Salehen, N. A., Abdulla, M. A., Jabbar, A. a.J., Alamri, Z. Z., and Alfaifi, S. M. (2023). *Gynura procumbens*' hepatoprotective benefits against thioacetamide-induced cirrhosis in rats include focusing on signaling pathways related to inflammation and oxidative stress. doi:10.1016/j.heliyon.2023.e19418 Heliyon 9, e19418

Iskander, M., Frahm, A. W., Sirirantikorn, S., Chanratita, W., Charuwichitratana, S., Jarikasem, S., et al. (2013). *Gynura procumbens* has antiherpetic properties. Complement Based on Evidence. doi:10.1155/2013/394865 Altern. Med. 2013, 394865

H.-J. Jeon and H.-J. Kwon (2016). extract from *Gynura procumbens* has an anti-inflammatory action. 5.15–520 in J. Digital Convergence 14, doi:10.14400/jdc.2016.14.10.515

Zhang, Y.-S., Si, J.-Y., Ma, S.-Q., Qi, Y.-D., Fu, T.-T., Ji, Y.-B., and others (2019). Pyrrolizidine alkaloids in *Gynura procumbens* were quantitatively analyzed using liquid chromatography-tandem quadrupole mass spectrometry after PCX solid-phase extraction enrichment. 99, 1090–1102, Int. J. Environ. Anal. Chem. doi:10.1080/03067319.2019.1616705

Hasan, C. M., Rashid, M. A., Islam, S. N., Jobaer, M. A., Ashrafi, S., Ahsan, M., and Hasan, C. M. (2023). *Gynura procumbens* (Lour.) Merr., an indigenous plant of Bangladesh, was investigated phytochemically and biologically: a natural drug discovery process. doi:10.3390/molecules28104186; Molecules 28, 4186

Jualang Azlan, G., June, C., Lee, H. W., Sani, H., Latip, J., Lee, P.-C., et al. (2012). *Gynura procumbens* fractions caused hypoglycemia in streptozotocin-induced diabetic rats via phosphorylating the liver's GSK3b (Ser-9). 969–975 in Sains Malays, 41.

Sirihamornpun, S., Sutthikhum, V., and Kaewseejan, N. (2015). Potential for flavonoid-enriched fractions with increased antioxidant potential in *Gynura procumbens* leaves. 12. 120–128 in J. Funct. Foods doi:10.1016/j.jff.2014.11.001

Huang, D., Li, C., Luo, L., Xu, Q., and Ke, R. (2018). AMPK's mechanisms for preserving the equilibrium of ATP during energy metabolism. 42, 384–392. doi:10.1002/cbin.10915 Cell Biol. Int.

Darwish, H. M., and Kharroubi, A. T. (2015). The disease of the century is diabetes mellitus. 850–867 in World Journal of Diabetes. doi:10.4239/wjd.v6.i6.850

Park, N. H., Kim, H. S., Lee, C. W., Kim, E. K., Lee, S. J., Kim, J., et al. (2011). J. Ethnopharmacol. 137, 427–433. doi:10.1016/j.jep.2011.04.072 Inhibition effect of *Gynura procumbens* extract on UV-B-induced matrix-metalloproteinase production in human dermal fibroblasts

Y. Kim, J. Kim, Ha, J., Yang, G., and Kim, J. (2016). AMPK activators: physiological actions and mechanisms of action. 48, e224. doi:10.1038/emm.2016.16 Exp. and Mol. Med.

Bhosale, P. B., Kim, S. M., Kim, G. S., Ha, S. E., Vetrivel, P., and Kim, H. H. (2021). *Gynura procumbens* polyphenol ligand's possible anti-inflammatory and antioxidant properties. doi:10.3390/ijms22168716 Int. J. Mol. Sci. 22, 8716

Aebisher, D., Makuch-Kocka, A., and Kubrak, T. P. (2025). The mechanisms of action, possible uses, and research perspectives of coumarins in anticancer treatment. doi:10.3390/pharmaceutics17050595, Pharmaceutics 17, 595

Hakim, P., Rabu, A., Lee, H. W., and Sani, H. (2012). Extracts from *Gynura procumbens* leaves have an antidiabetic impact via modifying the hepatic metabolism of carbohydrates in rats with streptozotocin-induced diabetes. 6, 796–812. doi:10.5897/jmpr11.1466; J. Med. plant Res.

